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Overview

We present a real-time system capable of segment-
ing multiple 3D objects and tracking their pose using a
single RGB camera, based on prior shape knowledge.
The proposed method uses twist-coordinates for pose
parametrization and a pixel-wise second-order optimiza-
tion approach which lead to major improvements in terms
of tracking robustness, especially in cases of fast motion
and scale changes, compared to previous region-based
approaches. Our C++/OpenGL implementation runs at
50–100 Hz on a commodity laptop when tracking a sin-
gle object without relying on GPGPU computations.
In [1] we compare our method to the current state of the
art [2] in various experiments involving challenging mo-
tion sequences and different complex objects.

Pose Parametrization

Objects mi, i = 1 . . . N are represented by dense surface
models consisting of points Xi

m := (X i
m, Y

i
m, Z

i
m)> ∈ R3.

The pre-calibrated and fixed intrinsic matrix of our cam-
era denoted by K and the pose of an object mi denoted
by T icm, are given by

K =

fx 0 cx
0 fy cy
0 0 1

 and T icm =

[
Ri
cm ticm

01×3 1

]
∈ SE(3).

For pose optimization we represent the rigid body mo-
tion that occurred between two consecutive frames using
twists

θξ̂ = θ

[
ŵ v
01×3 0

]
∈ se(3), with ŵ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∈ so(3),

parametrized by θξ = θ
(
ω1, ω2, ω3, v1, v2, v2

)> ∈ R6, with
w = (w1, w2, w3)

>, ||w||2 = 1, where θ is a one-parametric
coupling of the rotation and translation parameters de-
scribing the motion along a screw. Each twist can be
mapped to its corresponding rigid body transform via

exp(θξ̂) =

[
exp(θŵ) (I3×3 − exp(θŵ))ŵv+ww>vθ
01×3 1

]
∈ SE(3),

where exp(θŵ) can be computed according to Ro-
drigues’s formula. All images are undistorted removing
non-linear distortion such that the perspective projection
of a surface point to an image point is given by

xc = π(K(TcmX̃m)3×1), with π(X) = (X/Z, Y/Z)>.
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Figure 1: An illustration of pixel-wise posterior image
segmentation for two different objects in the same scene
with corresponding rendered silhouette masks.
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Figure 2: An illustration of the level-set pose embedding
Φ(xc) applied to a rendered silhouette mask.
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Pose Optimization

A camera color image is denoted by Ic : Ω → R3 where
Ω ⊂ R2 is the image domain. The color of each pixel
xc := (xc, yc)

> ∈ Ω is given by y = Ic(xc). Assuming
pixel-wise independence we optimize the energy

Ei = −
∑
xc∈Ω

log
(
He(Φ

i(xc))P
i
f(y)+(1−He(Φ

i(xc)))P
i
b(y)

)
,

directly for the pose parameters. Here P i
f(y) and P i

b(y)
represent the foreground and background region mem-
bership probability per object of each pixel’s color (see
Figure 1) and Φi is the level-set embedding of each
object’s contour defined by its pose (see Figure 2).
Thereby, the gradient of the energy is given by
∂Ei(θξ)

∂θξ
= −

∑
xc∈Ω

Pf(y)−Pb(y)

He(Φi(xc, θξ))(Pf(y)−Pb(y))+Pb(y)
· δe

· ∂Φi(xc, θξ)

∂θξ

where δe is the smoothed Dirac delta function corre-
sponding to He. Assuming small motion we get

∂Φi(xc, θξ0)

∂θξ
=
[
∂Φi

∂xc
, ∂Φi

∂yc

]fxZ i
c

0 −X i
cfx
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0
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c fy
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 0 Z i
c −Y i

c 1 0 0
−Z i

c 0 X i
c 0 1 0

Y i
c −X i

c 0 0 0 1

,
with Xi

c = (X i
c, Y

i
c , Z

i
c)
> = (T icmX̃

i
m)3×1. This results in the

1 × 6 per pixel Jacobian J i(xc, θξ0) = ∂Ei(xc, θξ0)/∂θξ,
evaluated at θξ0 = 0>. At each iteration the twist param-
eter step is calculated as

∆θξi = −
(∑

xc∈Ω

J i(xc, θξ0)
>J i(xc, θξ0)

)−1 ∑
xc∈Ω

J i(xc, θξ0)
>,

using Cholesky decomposition. The resulting step is
mapped to its corresponding rigid body transform and
applied to the initial transform estimate as

T icm← exp(∆θξi)T icm.

To improve robustness and runtime, we compute this
pose optimization in a coarse to fine manner.

Occlusion Handling

When tracking multiple objects simultaneously, mutual
occlusions are very likely to emerge, which must be
handled appropriately. In order to minimize rendering
and memory transfer we render the entire scene once
per iteration, download a common silhouette mask Is
and the according depth-buffer Id. For each model mi

we then compute Φi directly from Is. Thereby, the re-
spective contours C i can contain segments resulting
from occlusions that are considered in the respective
signed distance transform. To handle this, for each ob-
ject all pixels with a distance value that was influenced
by occlusion have to be discarded for pose optimiza-
tion (see Figure 3). The performance of our strategy is
demonstrated in an example experiment (see Figure 4).

Figure 3: Multiple object tracking with occlusion. Left:
Common silhouette mask Is of corresponding surface
models m1 and m2. Right: Φ2 within ±8 pixels around the
occluded contour C2 (grey values) and pixels influenced
by occlusion (bright red inside, dark red outside of Ω2

f).
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Figure 4: Experimental results with two objects occluding one another. Top: Example frames with the corresponding
silhouette masks Is below. Bottom: Plots of determined pose parameters for PWP3D and the proposed method.
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